52 research outputs found

    The nature of the variable millimetre–selected AGN in the brightest cluster galaxy of Abell 851

    Get PDF
    We present the detection of a bright 3 mm continuum source in the brightest cluster galaxy (BCG) in Abell 0851 (z = 0.411) with the NOrthern Extended Millimeter Array (NOEMA). When this detection is compared to other multifrequency observations across 21cm– 100μm, including new Arcminute Microkelvin Imager 15 GHz observations, we find evidence for a relatively flat, variable core source associated with the BCG. The radio power and amplitude of variability observed in this galaxy is consistent with the cores in lower redshift BCGs in X-ray–selected clusters, and the flat mm–cm spectrum is suggestive of the BCG being a low-luminosity active galactic nucleus archetype. The discovery of this system could provide a basis for a long-term study of the role of low-luminosity radio mode ‘regulatory’ feedback in massive clusters

    The properties of the star-forming interstellar medium at z=0.84-2.23 from HiZELS: mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies

    Get PDF
    We present adaptive optics assisted, spatially resolved spectroscopy of a sample of nine H�-selected galaxies at z =0.84–2.23 drawn from the HiZELS narrow-band survey. These galaxies have star-formation rates of 1–27M⊙ yr−1 and are therefore representative of the typical high-redshift star-forming population. Our �kpc-scale resolution observations show that approximately half of the sample have dynamics suggesting that the ionised gas is in large, rotating disks. We model their velocity fields to infer the inclination-corrected, asymptotic rotational velocities.We use the absolute B-band magnitudes and stellar masses to investigate the evolution of the B-band and stellar mass Tully-Fisher relationships. By combining our sample with a number of similar measurements from the literature, we show that, at fixed circular velocity, the stellar mass of star-forming galaxies has increased by a factor 2.5 between z =2 and z =0, whilst the rest-frame B-band luminosity has decreased by a factor �6 over the same period. Together, these demonstrate a change in mass-to-light ratio in the B-band of �(M/ LB) / (M/ LB)z=0 �3.5 between z =1.5 and z =0, with most of the evolution occuring below z =1. We also use the spatial variation of [Nii] /H� to show that the metallicity of the ionised gas in these galaxies declines monotonically with galactocentric radius, with an average �log(O/H) /�R=−0.027±0.005 dex kpc−1. This gradient is consistent with predictions for high-redshift disk galaxies from cosmologically based hydrodynamic simulations. Key words: galaxies: evolution – galaxies: formation – galaxies: high-redshif

    An ALMA survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS field: halo masses for submillimetre galaxies

    Get PDF
    We present an analysis of the spatial clustering of a large sample of high-resolution, interferometically identified, submillimetre galaxies (SMGs). We measure the projected cross-correlation function of ∼350 SMGs in the UKIDSS Ultra Deep-Survey Field across a redshift range of z = 1.5–3 utilizing a method that incorporates the uncertainties in the redshift measurements for both the SMGs and cross-correlated galaxies through sampling their full probability distribution functions. By measuring the absolute linear bias of the SMGs, we derive halo masses of log10(Mhalo[h−1M⊙]) ∼ 12.8 with no evidence of evolution in the halo masses with redshift, contrary to some previous work. From considering models of halo mass growth rates, we predict that the SMGs will reside in haloes of mass log10(Mhalo[h−1M⊙]) ∼ 13.2 at z = 0, consistent with the expectation that the majority of z = 1.5–3 SMGs will evolve into present-day spheroidal galaxies. Finally, comparing to models of stellar-to-halo mass ratios, we show that SMGs may correspond to systems that are maximally efficient at converting their gas reservoirs into stars. We compare them to a simple model for gas cooling in haloes that suggests that the unique properties of the SMG population, including their high levels of star formation and their redshift distribution, are a result of the SMGs being the most massive galaxies that are still able to accrete cool gas from their surrounding intragalactic medium

    Central Powering of the Largest Lyman-alpha Nebula is Revealed by Polarized Radiation

    Full text link
    High-redshift Lyman-alpha blobs are extended, luminous, but rare structures that appear to be associated with the highest peaks in the matter density of the Universe. Their energy output and morphology are similar to powerful radio galaxies, but the source of the luminosity is unclear. Some blobs are associated with ultraviolet or infrared bright galaxies, suggesting an extreme starburst event or accretion onto a central black hole. Another possibility is gas that is shock excited by supernovae. However some blobs are not associated with galaxies, and may instead be heated by gas falling into a dark matter halo. The polarization of the Ly-alpha emission can in principle distinguish between these options, but a previous attempt to detect this signature returned a null detection. Here we report on the detection of polarized Ly-alpha from the blob LAB1. Although the central region shows no measurable polarization, the polarized fraction (P) increases to ~20 per cent at a radius of 45 kpc, forming an almost complete polarized ring. The detection of polarized radiation is inconsistent with the in situ production of Ly-alpha photons, and we conclude that they must have been produced in the galaxies hosted within the nebula, and re-scattered by neutral hydrogen.Comment: Published in the August 18 issue of Nature. 1750 words, 3 figures, and full Supplementary Information. Version has not undergone proofing. Reduced and processed data products are available here: http://obswww.unige.ch/people/matthew.hayes/LymanAlpha/LabPol

    Observations of Lyα\alpha Emitters at High Redshift

    Full text link
    In this series of lectures, I review our observational understanding of high-zz Lyα\alpha emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at z0z\sim 0 to z10z\sim 10. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs' physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-zz galaxies, high-zz analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Lyα\alpha sources extended over 10100\sim 10-100 kpc, dubbed Lyα\alpha blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Lyα\alpha damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {\sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.Comment: Lecture notes for `Lyman-alpha as an Astrophysical and Cosmological Tool', Saas-Fee Advanced Course 46. Verhamme, A., North, P., Cantalupo, S., & Atek, H. (eds.) --- 147 pages, 103 figures. Abstract abridged. Link to the lecture program including the video recording and ppt files : https://obswww.unige.ch/Courses/saas-fee-2016/program.cg

    Molecular features of the UNC-45 chaperone critical for binding and folding muscle myosin

    Get PDF
    Myosin is a motor protein that is essential for a variety of processes ranging from intracellular transport to muscle contraction. Folding and assembly of myosin relies on a specific chaperone, UNC-45. To address its substrate-targeting mechanism, we reconstitute the interplay between Caenorhabditis elegans UNC-45 and muscle myosin MHC-B in insect cells. In addition to providing a cellular chaperone assay, the established system enabled us to produce large amounts of functional muscle myosin, as evidenced by a biochemical and structural characterization, and to directly monitor substrate binding to UNC-45. Data from in vitro and cellular chaperone assays, together with crystal structures of binding-deficient UNC-45 mutants, highlight the importance of utilizing a flexible myosin-binding domain. This so-called UCS domain can adopt discrete conformations to efficiently bind and fold substrate. Moreover, our data uncover the molecular basis of temperature-sensitive UNC-45 mutations underlying one of the most prominent motility defects in C. elegans

    The dependence of star formation activity on environment and stellar mass at z similar to 1 from the HiZELS-H alpha survey

    No full text
    This paper presents an environment and stellar mass study of a large sample of star-forming Hα emitters at z= 0.84 from the High-z Emission Line Survey (HiZELS), over 1.3 deg 2 split over two fields (COSMOS and UKIDSS UDS). By taking advantage of a truly panoramic coverage of a wide range of environments, from the field to a rich cluster, it is shown that both stellar mass and environment play crucial roles in determining the properties of star-forming galaxies. Specific star formation rates (sSFRs) decline with stellar mass in all environments, and the fraction of Hα star-forming galaxies declines sharply from ≈40 per cent for galaxies with masses around 10 10M ⊙ to effectively zero above 10 11.5M ⊙, confirming that mass-downsizing is generally in place by z∼ 1. The fraction of star-forming galaxies is also found to fall sharply as a function of local environmental density from ≈40 per cent in the field to approaching zero at rich group/cluster densities. When star formation does occur in such high density regions, it is found to be mostly dominated by potential mergers and, indeed, if only non-merging star-forming galaxies are considered, then the environment and mass trends are even stronger and are qualitatively similar at all masses and environments, respectively, as in the local Universe. The median SFR of Hα emitters at z= 0.84 is found to increase with density for both field and intermediate (group or cluster outskirts) densities; this is clearly seen as a change in the faint-end slope of the Hα luminosity function from steep (α≈-1.9), in poor fields, to shallow (α≈-1.1) in groups and clusters. Interestingly, the relation between median SFR and environment is only found for low- to moderate-mass galaxies (with stellar masses below about 10 10.6M ⊙), and is not seen for the most massive star-forming galaxies. Overall, these observations provide a detailed view over a sufficiently large range of mass and environment to reconcile previous observational claims: stellar mass is the primary predictor of star formation activity at z∼ 1, but the environment, while initially enhancing the median SFR of (lower mass) star-forming galaxies, is ultimately responsible for suppressing star formation activity in all galaxies above surface densities of 10-30 Mpc -2 (group and cluster environments). © 2010 The Authors. Journal compilation © 2010 RAS
    corecore